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Graphical Abstract 

 
Abstract 
An analysis of the effects of microgravity and space radiation on astronauts’ RNA expression has 

been developed, utilizing data from NASA’s “Cell-Free RNA Analysis of Plasma Samples Collected 
from Six Astronauts in JAXA Cell-Free Epigenome (CFE) Study.” The project aims to deepen our 
understanding of how the space environment affects gene expression, particularly in key genes such as 
ACTB and ACTG1, by employing quantum simulations and unconventional logic, including quantum 
and fuzzy logic. The results suggest that specific genes like ACTB and ACTG1 undergo significant 
changes in their expression under these unique conditions. This interdisciplinary approach allows for a 
detailed analysis of gene expression data and explores the potential of emerging technologies in space 
research and bioinformatics. 

Keywords: Microgravity, fuzzy logic, quantum logic, quantum computing, quantum simulation, 
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Purpose, Rationale, and Limitations 
Purpose Quantum computing offers unprec-

edented performance potential by leveraging 
the principles of quantum mechanics to solve 
complex problems that are infeasible for classi-
cal computers. While quantum computers are 
not yet fully operational for large-scale practi-
cal applications, having a scalable infrastruc-
ture ready for quantum computing when the 
technology matures can position researchers 
ahead in fields like spatial gene expression 
analysis. This forward-thinking approach pro-
vides a competitive edge in bioinformatics, al-

lowing researchers to explore quantum compu-
ting's transformative capabilities as soon as it 
becomes viable. 

In addition, quantum computing could signif-
icantly enhance data analysis, pattern recogni-
tion, and machine learning in gene expression 
studies. Preparing a flexible and scalable sys-
tem for quantum computing now ensures that 
when the technology is ready, researchers can 
immediately leverage its superior processing 
power, thereby accelerating scientific discovery 
and gaining insights faster than conventional 
methods allow. 
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Other factors of interest include the possibil-
ity of hybrid systems where quantum and clas-
sical computing work in tandem, as well as the 
exploration of quantum machine learning algo-
rithms for spatial gene expression analysis. 
These hybrid systems can maximize current 
computing capabilities while preparing for fu-
ture advancements. The integration of uncon-
ventional logic systems like fuzzy logic with 
quantum computing also presents a unique op-
portunity to analyze gene expression data more 
comprehensively. 

Rationale: The unique combination of quan-
tum computing and fuzzy logic presents a novel 
approach to spatial gene expression analysis. 
Quantum computing offers the potential for 
vast parallelism and complex problem-solving 
capabilities, which can be highly beneficial in 
analyzing the multidimensional and often noisy 
data associated with gene expression. Mean-
while, fuzzy logic provides a nuanced frame-
work for handling uncertainty and imprecision, 
common features in biological data. 

Spatial gene expression analysis benefits from 
this integrated approach as it involves under-
standing the spatial distribution and expression 
levels of genes across different regions of a tis-
sue or organism. This analysis often involves 
large datasets with complex relationships, 
where quantum computing can enhance the ef-
ficiency of data processing and fuzzy logic can 
improve the interpretability of the results. This 
interdisciplinary focus aligns well with the ex-
ploratory and complex nature of biological sys-
tems. 

Limitations: The current limitations of quan-
tum computing stem from its nascent stage of 
development. Quantum computers face chal-
lenges such as qubit coherence times, error 
rates, and scaling issues. These limitations re-
strict the size and complexity of problems that 
current quantum computers can handle effec-
tively. While quantum computing has proven 
functional and useful in this study, fully ex-
ploiting its potential requires functional and 
scalable quantum computers with higher qubit 
counts, lower error rates, and robust quantum 
error correction. 

In addition to hardware constraints, software 
challenges such as developing effective quan-
tum algorithms and integrating quantum com-
puting with classical computing frameworks 

are ongoing areas of research. These limitations 
mean that, while promising, quantum compu-
ting is currently best suited for experimental 
and exploratory applications rather than main-
stream, large-scale data analysis. Nonetheless, 
as quantum computing technology advances, its 
limitations will gradually diminish, allowing 
for more comprehensive applications in spatial 
gene expression analysis and beyond. 

Introduction 
Gene expression analysis in astronauts has 

emerged as a critical area of study[4], particu-
larly with the increasing interest in long-term 
human spaceflight and exploration missions. 
The unique environment of space, character-
ized by microgravity, increased radiation expo-
sure, and confinement, presents significant 
challenges to human health, including altera-
tions in gene expression that may impact vari-
ous biological processes. Understanding these 
changes is crucial for developing countermeas-
ures to protect astronauts and for advancing our 
knowledge of how space environments affect 
living organisms. 

Recent studies have demonstrated that space-
flight induces a wide range of changes in gene 
expression, influencing immune function[5], 
muscle atrophy, bone density, and even cogni-
tive function. For example, NASA's Twins 
Study[6], which examined the genetic and phys-
iological changes in astronaut Scott Kelly dur-
ing his year-long mission on the International 
Space Station (ISS), revealed alterations in 
gene expression related to immune response, 
DNA repair, and cellular stress. Similarly, other 
studies have identified significant changes in 
the expression of genes involved in inflamma-
tion, apoptosis, and cellular metabolism, among 
other functions, highlighting the extensive im-
pact of spaceflight on the human body. 

Spatial gene expression analysis[7], which ex-
amines the spatial distribution of gene expres-
sion within tissues, offers additional insights 
into how specific regions of the body respond 
to space environments. This technique is partic-
ularly relevant for understanding tissue-specific 
responses and identifying potential vulnerabili-
ties or adaptive mechanisms. However, analyz-
ing spatial gene expression data is computation-
ally intensive, given the high dimensionality 
and complexity of the data. 
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The need for high-performance computa-
tional approaches is evident in the context of 
spatial gene expression analysis, where the vol-
ume and complexity of data often exceed the 
capabilities of classical computing methods. 
Quantum computing[8] presents a promising so-
lution to this challenge, offering substantial per-
formance improvements through its ability to 
handle vast amounts of data simultaneously and 
perform complex calculations more efficiently 
than classical computers. Quantum computing's 
unique characteristics[9], such as superposition 
and entanglement, enable it to explore multiple 
solutions simultaneously, making it particularly 
well-suited for tasks like gene expression anal-
ysis, where large-scale parallel processing and 
pattern recognition are crucial. 

By leveraging quantum computing, research-
ers can accelerate the analysis of spatial gene 
expression data, uncovering patterns and in-
sights that would be difficult or impossible to 
detect with conventional methods. This ap-
proach not only enhances the speed of data 
analysis but also opens up new possibilities for 
exploring complex biological systems and their 
responses to space environments. 

Bridging the Gap 
The intersection of gene expression analysis 

in astronauts and quantum computing repre-
sents a novel and promising research avenue. 
The unique capabilities of quantum computing 
align well with the challenges posed by spatial 
gene expression analysis, making it a logical 
step forward in the field. Incorporating uncon-
ventional logic, such as fuzzy logic[10], further 
enhances this approach by providing a frame-
work for handling the uncertainty and variabil-
ity inherent in biological data. 

This paper aims to explore this intersection, 
focusing on the effects of microgravity and 
space radiation on astronauts' RNA expression 
using quantum simulations and unconventional 
logic. By doing so, it not only contributes to our 
understanding of space-induced changes in 
gene expression but also demonstrates the po-
tential of emerging technologies in space re-
search and bioinformatics, positioning itself as 
a step forward in advancing our knowledge and 
capabilities in this domain. 

Experimental design 
Hypothesis 

The primary hypothesis of this study is that 
the unique environment of space, characterized 
by microgravity and increased radiation expo-
sure, induces significant changes in gene ex-
pression among astronauts, which can be effec-
tively analyzed using quantum computing and 
unconventional logic systems such as fuzzy 
logic. The study specifically focuses on the ex-
pression of key genes, such as ACTB and 
ACTG1, to explore the potential of emerging 
computational technologies in understanding 
the biological effects of space environments. 

Models 
To test this hypothesis, the study utilizes two 

main computational models: 
Quantum Computing Model. This model is 

based on quantum circuits designed to analyze 
and simulate gene expression data. The quan-
tum circuits are constructed using qubits and 
quantum gates, such as the Hadamard gate and 
Controlled NOT (CNOT) gate, to explore su-
perposition and entanglement properties that 
could reflect changes in gene expression. The 
quantum computing model is employed to per-
form statistical analyses, such as ANOVA tests 
and Tukey HSD tests, on the gene expression 
data across different flight conditions (pre-
flight, in-flight, and post-flight). 

 
Fuzzy Logic Model. The fuzzy logic model in-

terprets the relative levels of gene expression 
using fuzzy sets and membership functions. 
This model handles the inherent uncertainty 
and variability in biological data, offering a nu-
anced assessment of gene expression varia-
tions. The fuzzy logic model uses linguistic var-
iables, such as "low," "medium," and "high," to 
describe the gene expression levels and estab-
lishes fuzzy rules that relate flight conditions to 
expression levels. 

Methods 
The study employs the following experi-

mental methods to evaluate the hypothesis: 
Sample Collection and Processing[1]. Blood 

samples are collected from astronauts in space 
(on the ISS) and on Earth, following specific 
protocols to preserve the integrity of the sam-
ples. The plasma is separated through gel, and 
RNA is extracted using standard biochemical 
methods, followed by library preparation for se-
quencing. 
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Data Analysis[1]. The RNA sequencing data 
is analyzed using the CLC Genomics Work-
bench software, where the reads are mapped to 
the human genome, and gene annotations are 
quantified. The resulting count values are nor-
malized and log-transformed to calculate ex-
pression levels. 

Quantum Simulations. Quantum circuits are 
constructed to simulate gene expression 
changes using quantum gates. The circuits are 
tested on quantum simulators like Qiskit's 
qasm_simulator and statevector_simulator to 
analyze the probability distributions of the 
measurement outcomes. The results are visual-
ized using histograms and state vectors to inter-
pret the superpositions and entanglements gen-
erated by the quantum circuits. 

Fuzzy Inference. The fuzzy logic model is 
constructed using the scikit-fuzzy package in 
Python. The universe of discourse is defined for 
the levels of gene expression, and membership 
functions are created for the fuzzy sets. Fuzzy 
rules are established to relate flight conditions 
to expression levels, and the fuzzy inference 
system is simulated to calculate the gene ex-
pression levels under different conditions. 

Statistical Analysis. Statistical analyses, such 
as ANOVAs and Tukey HSD tests, are per-
formed to identify significant differences in 
gene expression across the flight conditions. 
Outliers are identified using Z-scores, and Pear-
son correlations are calculated to assess the re-
lationship between the expression of different 
genes. 

Biological Interpretation. The results are in-
terpreted in the context of the biological rele-
vance of the genes, focusing on the functions of 
the ACTB and ACTG1 genes and how their ex-
pression is affected by space environments. The 
quantum and fuzzy logic models are evaluated 
for their effectiveness in analyzing gene expres-
sion data and for their potential in future space 
biology research. 

Sample Collection and Analytical Proce-
dures 

In the referenced study,[1] the protocol for 
blood sample collection and subsequent pro-
cessing was meticulously designed to preserve 
the integrity of plasma samples. Blood was 
drawn into specialized tubes that separate 
plasma through a gel and contain ethylenedia-

minetetraacetic acid (EDTA) as an anticoagu-
lant. These samples underwent a standard freez-
ing process immediately after collection—on 
the International Space Station (ISS) at −95°C 
and on the ground at −80°C – following a cen-
trifugation protocol adapted to the differing 
gravitational conditions of each environment. 
Post-centrifugation, the samples were securely 
stored until all collections were complete; at 
this point, they were transported to the Univer-
sity of Tsukuba for further analysis. 

Upon thawing, plasma samples were carefully 
partitioned and subjected to a sequence of cen-
trifugation and mixing with reagents such as 
TRIzol-LS and chloroform, facilitating the iso-
lation of RNA. Following a series of incuba-
tions and centrifugation, the RNA was precipi-
tated, washed, and solubilized for quantifica-
tion using high-sensitivity assay kits. 

The subsequent library preparation for se-
quencing was carried out with meticulous atten-
tion to the template amount, which was con-
firmed via real-time polymerase chain reaction 
to ensure optimal amplification cycles. After 
purification, the libraries were ready for high-
throughput sequencing on the NextSeq500 plat-
form. 

The resulting data were processed using the 
CLC Genomics Workbench software, which 
entailed mapping reads to the human genome 
and quantifying gene annotations to compile to-
tal count values. These counts underwent nor-
malization and logarithmic transformation to 
enable a precise calculation of expression lev-
els. 

In-depth statistical analyses, such as ANO-
VAs and empirical DGE (Differential Gene Ex-
pressions) assessments, were performed to elu-
cidate the differences in gene expression across 
the various stages of flight—pre-flight, in-
flight, and post-flight. Such meticulous data 
processing has facilitated a comprehensive un-
derstanding of how space travel influences gene 
expression. 

Descriptive Statistics 
We begin with an initial approach to the data 

from the experiment “Cell-Free RNA Analysis 
of Plasma Samples Collected from Six Astro-
nauts in JAXA Cell-Free Epigenome (CFE) 
Study” [1] from the file which includes 64 RNA 
samples from three different groups: 
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GLDS-530_rna-seq_TGB_050_64sam-
ples_3group_totalcount.xlsx. Details suggest 
that nucleic acid extraction was quantified us-
ing qubit fluorometers and a qubit RNA HS as-
say kit. The library construction was performed 
with a targeted and paired RNA sequencing ap-

proach, and the sequencing itself was con-
ducted on an Illumina NextSeq500 with a read 
length of 36 base pairs.  

We can proceed with the code (Tested in 
Manjaro Linux 23.1.3, Python 3.8.12, 
SciPy1.10.1, Qiskit 0.45.1, skfuzzy 0.4.2): 

import pandas as pd;import numpy as np;import matplotlib.pyplot as plt;import seaborn as sns;from 
scipy import stats 
data=pd.read_excel('GLDS-530_rna-seq_TGB_050_64samples_3group_total-
count.xlsx');data_clean=data.dropna() 

print(data_clean.describe()) 

sns.boxplot(data=data_clean);plt.xticks(rotation=45);plt.ylabel('Expression Levels');plt.show() 

       Experiment - Range (original values)  \ 

count                          49950.000000    

mean                             165.618779    

std                             2608.284198    

min                                0.000000    

25%                                0.000000    

50%                                0.000000    

75%                               84.000000    

max                           277978.000000    

 

       Experiment - IQR (original values)  \ 

count                        49950.000000    

mean                            36.490531    

std                            452.929190    

min                              0.000000    

25%                              0.000000    

50%                              0.000000    

75%                              8.000000    

max                          47424.000000    

 

       Experiment - Difference (original values)  \ 

count                               49950.000000    

mean                                  -20.786709    

std                                   638.901371    

min                                -71605.442029    

25%                                     0.000000    

50%                                     0.000000    

75%                                     0.000000    

max                                  6103.855072    

 

       Experiment - Fold Change (original values)   Pre - Means  \ 

count                                49950.000000  49950.000000    

mean                                     1.383346     35.759667    

std                                     12.587598    361.617672    

min                                   -299.294118      0.000000    

25%                                      1.000000      0.000000    

50%                                      1.000000      0.000000    

75%                                      1.000000      7.294118    

max                                    633.391304  29762.941176    

 

       Flight - Means  Post - Means   

count    49950.000000  49950.000000   

mean        47.579946     27.306799   

std        783.483626    234.095884   

min          0.000000      0.000000   

25%          0.000000      0.000000   

50%          0.000000      0.000000   

75%          5.041667      8.869565   

max      82651.833333  26656.521739   



Prnano.com, https://doi.org/10.33218/001c.117460  Andover House, N. Andover, MA USA  
The official Journal of CLINAM – ISSN:2639-9431 (online)  License: CC BY-NC 4.0 

 

1284 

 

 
Figure 1. Graph from GLDS-530_rna-seq_TGB_050_64samples_3group_totalcount.xlsx 

Figure 1 displays various statistical measures 
for a dataset of gene expression. Each column 
represents a different metric, such as range, in-
terquartile range (IQR), difference, fold 
change, and averages for different experiment 
phases (pre-flight, during flight, and post-
flight). The columns represent the median of the 
data, and the points indicate potential outliers, 
signifying notable variations in expression that 

could be biologically significant. The presence 
of extreme values in the “Fold Change” column 
suggests that some genes exhibit very high or 
low changes in expression in response to the ex-
periment. 

Now, we will obtain descriptive statistics us-
ing the following code: 

 

import pandas as pd;import numpy as np;import matplotlib.pyplot as plt 

data=pd.read_excel('GLDS-530_rna-seq_TGB_050_64samples_3group_totalcount.xlsx');data=pd.DataFrame(data) 

descriptive_stats=data.describe();print(descriptive_stats) 

 

Results: 
       Experiment - Range (original values)  ...  Post - Means 

count                          49950.000000  ...  49950.000000 

mean                             165.618779  ...     27.306799 

std                             2608.284198  ...    234.095884 

min                                0.000000  ...      0.000000 

25%                                0.000000  ...      0.000000 

50%                                0.000000  ...      0.000000 

75%                               84.000000  ...      8.869565 

max                           277978.000000  ...  26656.521739 

 

 

The presence of outliers is particularly notable 
in this data set, given the high maximum value 
compared to the average and median. This 

could imply the presence of a few genes with 
very high changes in expression under experi-
mental conditions. 

 
ANOVA Test 

import pandas as pd;from scipy import stats 

data=pd.read_excel('GLDS-530_rna-seq_TGB_050_64samples_3group_totalcount.xlsx') 

f_value,p_value=stats.f_oneway(data['Pre - Means'],data['Flight - Means'],data['Post - Means']) 

print(f"ANOVA results: F={f_value}, p={p_value}") 

 
ANOVA results: F=19.233218483262075, p=4.4467851020215725e-09 
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The ANOVA test results suggest statistically 
significant differences in gene expression be-
tween at least two flight conditions (pre, during, 
and post). The F-value measures the variance 
among the group means, and a large value typ-
ically indicates a significant difference.  

The p-value is very small (less than 0.05), al-
lowing us to reject the null hypothesis that there 
are no significant differences in gene expres-
sion among the groups. 

 

Tukey Honestly Significant Difference (HSD) Test 
import pandas as pd;from statsmodels.stats.multicomp import pairwise_tukeyhsd 

data=pd.read_excel('GLDS-530_rna-seq_TGB_050_64samples_3group_totalcount.xlsx',sheet_name='64sam-
ples_3group_totalcount') 

melted_data=pd.melt(data,id_vars=[‘Feature ID’], 

value_vars=[‘Pre - Means’,’ Flight - Means’,’ Post - Means’],var_name='Condition’,value_name='Value’) 

melted_data=melted_data[pd.to_numeric(melted_data['Value'],errors='coerce').notnull()] 

tukey=pairwise_tukeyhsd(endog=melted_data['Value'],groups=melted_data['Condition'],alpha=0.05) 

print(tukey.summary()) 

 

Results: 
==================================================================== 

  group1 group2 meandiff p-adj lower upper reject 

-------------------------------------------------------------------- 

Flight - Means Post - Means -17.4404 0.0 -24.0616 -10.8191 True 

Flight - Means Pre - Means -10.1812 0.0009 -16.8024 -3.56 True 

  Post - Means Pre - Means 7.2592 0.0275 0.6379 13.8804 True 

-------------------------------------------------------------------- 

The Tukey HSD test results indicate statisti-
cally significant differences in the means be-
tween the groups compared across the flight 
phases (pre, during, and post). Here is the 
breakdown of what each row signifies: 

Flight - Means vs. Post - Means. The mean 
difference between the flight and post-flight 
phases is -17.4404, and this difference is statis-
tically significant with an adjusted p-value of 
0.0 (less than the significance level of 0.05), 
thus rejecting the null hypothesis of equal 
means. 

Flight - Means vs. Pre - Means. The mean dif-
ference between the flight and pre-flight phases 
is -10.1812, which is also statistically signifi-
cant with an adjusted p-value of 0.0009. 

Post - Means vs. Pre - Means. The mean dif-
ference between the post-flight and pre-flight 
phases is 7.2592, and while closer to the limit, 
it remains significant with an adjusted p-value 
of 0.0275. 

In all cases, the “reject” column is “True,” in-
dicating that the Tukey test found significant 

differences between the means of the compared 
groups and, therefore, rejects the hypothesis 
that the means are equal for those pairs of con-
ditions. This analysis suggests that the flight 
conditions (pre-, during, and post-) signifi-
cantly affect the gene expression of the genes 
studied. 

The results indicate that outliers have been 
identified in all three conditions: pre-flight, dur-
ing flight, and post-flight, based on a Z-score. 
A Z-score greater than 3 or less than -3 is com-
monly considered a criterion for identifying 
outliers in a dataset. 

The genes ACTB, ACTG1, and others listed 
here exhibit an expression significantly differ-
ent from the mean, which may indicate special-
ized regulation in response to space flight con-
ditions. These findings could be the starting 
point for a more detailed investigation into the 
functions of these genes and their potential rel-
evance to adaptation to space. 

 

Outliers 
import pandas as pd;import numpy as np;import matplotlib.pyplot as plt;import seaborn as sns;from scipy 
import stats 

from scipy.stats import zscore 

data=pd.read_excel('GLDS-530_rna-seq_TGB_050_64samples_3group_totalcount.xlsx');data=data.dropna() 

for column in [‘Pre - Means’,’ Flight - Means’,’ Post - Means’]:data[f’z_score_{col-
umn}’]=zscore(data[column]) 

outliers={} 
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for column in [‘Pre - Means’,’ Flight - Means’,’ Post - Means’]:outliers[col-
umn]=data[np.abs(data[f’z_score_{column}’])>3] 

for column in outliers: 

  print(f"Outliers in {column}:") 

  print(outliers[column]) 

Results: 
Outliers in Pre - Means: 

      Feature ID  ...  z_score_Post - Means 

4471        ACTB  ...             84.975497 

4484       ACTG1  ...             16.279435 

4664     ADIPOR1  ...              4.123388 

4911       AHNAK  ...             10.615404 

6043     ANKRD12  ...              2.917627 

...          ...  ...                   ... 

55289        VIM  ...              5.221982 

56682       YBX1  ...              8.323864 

56721      YPEL5  ...              2.502519 

56734      YWHAE  ...              2.760313 

56749      YWHAZ  ...              7.191095 

[187 rows x 11 columns] 

Outliers in Flight - Means: 

      Feature ID  ...  z_score_Post - Means 

4471        ACTB  ...             84.975497 

4484       ACTG1  ...             16.279435 

4911       AHNAK  ...             10.615404 

6837     ARHGDIB  ...              7.669722 

7370         B2M  ...             34.392967 

...          ...  ...                   ... 

54398      TUBB1  ...              4.481847 

54722        UBC  ...              8.503279 

55238        VCL  ...              3.164834 

56721      YPEL5  ...              2.502519 

56749      YWHAZ  ...              7.191095 

[97 rows x 11 columns] 

 

Outliers in Post - Means: 

      Feature ID  ...  z_score_Post - Means 

4471        ACTB  ...             84.975497 

4484       ACTG1  ...             16.279435 

4512       ACTR2  ...              3.540195 

4513       ACTR3  ...              3.019593 

4664     ADIPOR1  ...              4.123388 

...          ...  ...                   ... 

55524       WDR1  ...              3.124344 

55654       WNK1  ...              4.520293 

56682       YBX1  ...              8.323864 

56695       YBX3  ...              3.712367 

56749      YWHAZ  ...              7.191095 

[220 rows x 11 columns] 

 
 
 
Biological Relevance of the ACTB Gene 
We start with the record[1] of the ACTB gene, and compare it with the Vectorless Gravity Effect on T 

Cell Activation[2] study to verify its biological relevance(Figure 2). 
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Figure 2. Profile: GDS2035 / AFFX-HSAC07/X00351_3_at. Title: Vectorless gravity effect on T cell activation. 

Organism: Homo sapiens. 
 

Feature ID Experiment - Range (original values) Experiment - IQR (original values) Experiment - 
Difference (original values)     

Experiment - Fold Change (original values) Pre - Means Flight - Means Post - Means 

ACTB 95743 14532 -19202.4365942029 -1.96400088544702 25668.2941176471 39121.9583333333
 19919.5217391304 

Extracting the specific data of the ACTB gene: 
GSM24817 Donor 2 1g 0 hr 62.0225 98 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL  DETECTION P-VALUE 

AFFX-HSAC07/X00351_3_at 20 20 62.022472 P
 0.00007 

GSM29564 Donor 2 1g 4 hr 93.9682 99 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

AFFX-HSAC07/X00351_3_at 20 20 93.968155 P
 0.000052 

GSM29565 Donor 2 vg 0 hr 17.8095 97 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

AFFX-HSAC07/X00351_3_at 20 20 17.809526 P
 0.00007 

GSM29566 Donor 2 vg 4 hr 27.963 98 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

AFFX-HSAC07/X00351_3_at 20 20 27.962961 P
 0.00007 

GSM29567 Donor 4 1g 0 hr 42.6353 98 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

AFFX-HSAC07/X00351_3_at 20 20 42.635292 P
 0.000052 

GSM29568 Donor 4 1g 4 hr 63.1515 99 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

AFFX-HSAC07/X00351_3_at 20 20 63.151516 P
 0.000052 

GSM29569 Donor 4 vg 0 hr 29.6474 98 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

AFFX-HSAC07/X00351_3_at 20 20 29.647434 P
 0.000044 

GSM29570 Donor 4 vg 4 hr 15.5854 98 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

AFFX-HSAC07/X00351_3_at 20 20 15.585366 P
 0.000052 

GSM29571 Donor 5 1g 0 hr 54.9206 99 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

AFFX-HSAC07/X00351_3_at 20 20 54.92063 P 0.000052 

GSM29572 Donor 5 1g 4 hr 122.679 99 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 
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AFFX-HSAC07/X00351_3_at 20 20 122.67858 P
 0.000044 

GSM29573 Donor 5 vg 0 hr 85.0396 99 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

AFFX-HSAC07/X00351_3_at 20 20 85.0396 P 0.00007 

GSM29574 Donor 5 vg 4 hr 21.4211 97 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

AFFX-HSAC07/X00351_3_at 20 20 21.421053 P
 0.00006 

The graphs and values indicate differences in 
the expression of the ACTB gene under terres-
trial gravity and microgravity (or null vectorial 
gravity) conditions. The biological relevance of 
these data can be confirmed because: 
• All values have an ‘ABS_CALL’ of ‘P,’ 

indicating that all samples’ gene expres-
sion is detectable and significant. The 
‘DETECTION P-VALUES’ are also very 
low, suggesting an extremely low proba-
bility of these being false positives. 

• There is a clear trend if we compare ex-
pression values in conditions of terrestrial 
gravity and microgravity: the expression 
of the ACTB gene tends to be lower under 
microgravity, which is evident in the de-
creased expression values in samples ex-
posed to microgravity. 

• The ACTB gene encodes beta-actin, a pro-
tein part of the cytoskeleton, and plays a 

critical role in cellular structure, motility, 
and signaling. Changes in its expression 
could be related to cellular adaptations to 
a microgravity environment. 

Given that the project focuses on analyzing 
the effects of microgravity and space radiation 
on RNA using quantum simulations and uncon-
ventional logic, these data are relevant as they 
show that microgravity can significantly influ-
ence the expression of a gene involved in fun-
damental cellular functions. This suggests that 
we can further explore how these conditions al-
ter gene expression and the implications for the 
health and biology of astronauts. 

Quantum Circuit 
Here is an alternative for analyzing the ex-

pression of the ACTB gene using a quantum 
computer: 

 

 
Figure 3. Quantum circuit for ACTB analysis. 
It is important to highlight that this simplifi-

cation focused on the ACTB gene. Still, it can 
be scaled to analyze more genes depending on 
the capabilities of available quantum comput-
ers.The quantum gates employed, specifically 
the Hadamard (H) and Controlled NOT 
(CNOT) gates, play pivotal roles in manipulat-
ing qubit states, which are crucial for the quan-
tum simulations of gene expression. 

The Hadamard gate operates on a single qubit 
and transforms it into a superposition of states, 
giving equal probability to being measured as 
either state |0⟩ or |1⟩. The matrix below gives a 
representation: 

 
The CNOT gate is a two-qubit operation 

where one qubit acts as a control and the other 
as a target. If the control qubit is in state |1⟩, the 

target qubit is flipped; otherwise, it remains un-
changed. This entangling operation is founda-
tional for quantum computing and can be repre-
sented by the matrix: 
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Incorporating these gates within our quantum 

circuits has enabled us to simulate and analyze 
the potential effects of spaceflight on gene ex-
pression. Diagrams of the quantum circuits 

used, provided, alongside the matrices above, 
offer a dual perspective (visual and mathemati-
cal) of the operations performed during our 
simulations. 

from qiskit import QuantumCircuit 

# Normalized amplitudes for the quantum state 

quantum_state=[0.5505, 0.6796, 0.4849, 0] 

# Creating a quantum circuit with 2 qubits 

qc=QuantumCircuit(2) 

# Initializing the quantum state with the calculated amplitudes 

qc.initialize(quantum_state, [0, 1]) 

# We can add other gates and operations as needed 

# For example, we can add a Hadamard gate to the first qubit 

qc.h(0) 

# Add a CNOT gate to entangle the qubits 

qc.cx(0, 1) 

# Circuit visualization 

print(qc.draw(output='text')) 

# If you need to measure the qubits, you can add measurement operations 

qc.measure_all() 

# Circuit visualization with measurements 

print(qc.draw(output='text')) 

# Manually adjust the amplitudes to force normalization to be exactly 1 

# If the normalization is slightly greater than 1, we reduce the amplitudes a bit 

if normalization_check > 1: 

  # Reduce the amplitudes proportionally 

  scale_factor=np.sqrt(normalization_check) 

  alpha /= scale_factor 

  beta /= scale_factor 

  gamma /= scale_factor 

# Now we recalculate delta to ensure that normalization is exactly 1 

normalization_check_recalculated=np.sum([np.abs(alpha)**2, np.abs(beta)**2, np.abs(gamma)**2]) 

if normalization_check_recalculated < 1: 

  delta=np.sqrt(1 - normalization_check_recalculated) 

else: 

  # If the recalculated normalization is exactly 1 (or rounds to 1), then we don’t need delta 

  delta=0 

# New adjusted quantum state 

quantum_state_adjusted=[alpha, beta, gamma, delta] 

# Final verification of normalization after adjustment 

normalization_check_final_adjusted=np.sum(np.abs(np.array(quantum_state_adjusted))**2) 

normalization_check_final_adjusted, quantum_state_adjusted 
 

The circuit initializes two qubits in a specific 
quantum state based on the data of the ACTB 
gene, applies a Hadamard gate to the first qubit 
to create a superposition, then entangles both 
qubits with a CNOT gate, and finally measures 
both qubits. With this circuit, simulations can 
be conducted to investigate the probabilities of 

different measurement outcomes, which could 
provide information on how gene expression 
states are affected by space flight conditions or 
use it as a basis for more complex quantum al-
gorithms.To simulate the circuit and obtain re-
sults using the qasm_simulator, we can use: 

from qiskit import Aer, execute; from qiskit.visualization import plot_histogram 

# Execute the circuit on the quantum simulator 

simulator=Aer.get_backend('qasm_simulator') 

# Perform the simulation, specifying the number of repetitions of the circuit (shots) 

job=execute(qc, simulator, shots=1000) 
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# Obtain the results of the simulation 

result=job.result() 

# Obtain the counts of each result (the number of times each state was measured) 

counts=result.get_counts(qc) 

plot_histogram(counts) 

 

Figure 4. Quantum circuit histogram. 
The histogram displays the distribution of 

measurement results after numerous circuit ex-
ecutions. The labels on the x-axis represent the 
states of the qubits at the time of measurement, 
where ‘00’ means that both qubits were meas-
ured in the state |0⟩, ‘01’ means that qubit 0 was 
measured in |0⟩ and qubit 1 in |1⟩, and so on. 

The numbers on the y-axis represent the fre-
quency of each observed result. In your simula-
tion, the ‘00’ state occurred much more fre-
quently than the other states, indicating that the 
initial quantum state superposition had a higher 
probability of collapsing to this state during 
measurement. 

 
To obtain the final state vector using the statevector_simulator: 

# Execute the circuit on the statevector simulator 

statevector_simulator=Aer.get_backend('statevector_simulator') 

# Create a new circuit without measurements for the statevector simulation 

qc_statevector=qc.remove_final_measurements(inplace=False) 

job=execute(qc_statevector, statevector_simulator) 

result=job.result() 

# Obtain the final state vector of the circuit 

statevector=result.get_statevector(qc_statevector) 

print(statevector) 

Results: 
Statevector([0.86977824-5.88490403e-17j, 0.34289227+0.00000000e+00j, 0.34289227+0.00000000e+00j, -
0.09129953+5.88490403e-17j],dims=(2,2)) 

The final state vector describes the quantum 
state of the qubits just before measurement. In 
Dirac notation, this state would be written as: 

 
|ψ⟩ = 0.86978 |00⟩ + 0.34289 |01⟩ + 0.34289 

|10⟩ - 0.09130 |11⟩ 
 

This state is a superposition of the four base 
states with complex amplitudes. The squared 
amplitudes (ignoring the imaginary part, as it is 
very small and likely a result of numerical er-
rors) give the probabilities of measuring each of 

the base states in a run of the circuit. For exam-
ple, the probability of measuring the state ‘00’ 
is |0.86978|2, and so on for the other states. 

The fact that the final state vector has non-
zero amplitudes for all base states except ‘11’, 
which has a small negative amplitude, means 
that the circuit has created a complex superpo-
sition of states. The outcome of any single 
measurement is uncertain. However, after many 
runs, as reflected in the histogram, the probabil-
ity distribution of the measurement results be-
comes evident. 

Analyzing these results can explain how the 
applied quantum gates (the Hadamard and 
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CNOT gates in this case) have affected the ini-
tial state and how the resulting superpositions 
and entanglements correspond to the probabil-
ity of measuring certain states. This can be es-
pecially interesting when researching the ef-
fects of microgravity and space radiation on the 
RNA of astronauts if we relate these quantum 
states to specific biological or environmental 
conditions. 

The biological relevance of the ACTG1 gene 
To maintain simplicity in this project, we will 

focus on incorporating the ACTG1 gene. In the 
dataset Vectorless Gravity Effect on T Cell Ac-
tivation,[3] the ACTG1 gene shows a variation in 
its expression between pre-flight, during flight, 
and post-flight phases, suggesting that the 
spaceflight environment affects the gene’s ex-
pression. 

The specific record from the study[1] is: 
 

Feature ID Experiment - Range (original values) Experiment - IQR (original values) Experiment - 
Difference (original values)     
Experiment - Fold Change (original values) Pre - Means Flight - Means Post - Means 

ACTG1 10810 3515 -1706.44927536232 -
1.44459422210643 4568.76470588235 5544.66666666667
 3838.21739130435 

 

Figure 5. Profile: GDS2035 / 211983_x_at. Title: Vectorless gravity effect on T cell activation. Organism: Homo 
sapiens. 

 
Extracting the specific data of the ACTG1 gene: 

GSM24817 Donor 2 1g 0 hr 37.0449 98 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

211983_x_at 11 11 37.044945 P
 0.000244 

GSM29564 Donor 2 1g 4 hr 62.7325 98 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

211983_x_at 11 11 62.732487 P
 0.000244 

GSM29565 Donor 2 vg 0 hr 21.4762 98 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

211983_x_at 11 11 21.47619 P 0.00293 

GSM29566 Donor 2 vg 4 hr 15.6111 97 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

211983_x_at 11 11 15.611112 P
 0.000244 

GSM29567 Donor 4 1g 0 hr 27.1647 97 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

211983_x_at 11 11 27.164705 P
 0.000244 

 

GSM29568 Donor 4 1g 4 hr 18.5455 97 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 
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211983_x_at 11 11 18.545456 P
 0.000732 

GSM29569 Donor 4 vg 0 hr 16.5577 96 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

211983_x_at 11 11 16.55769 P 0.000244 

GSM29570 Donor 4 vg 4 hr 9.87805 97 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

211983_x_at 11 11 9.878049 P 0.010742 

GSM29571 Donor 5 1g 0 hr 18.7143 97 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

211983_x_at 11 11 18.714285 P
 0.000244 

GSM29572 Donor 5 1g 4 hr 120.345 99 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

211983_x_at 11 11 120.345245 P
 0.000244 

GSM29573 Donor 5 vg 0 hr 45.7426 98 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

211983_x_at 11 11 45.742573 P
 0.000244 

GSM29574 Donor 5 vg 4 hr 14.9298 96 

ID_REF Stat Pairs Stat Pairs Used VALUE
 ABS_CALL DETECTION P-VALUE 

211983_x_at 11 11 14.929825 P
 0.000244 

The data[3] show significant differences in the 
expression of the ACTG1 gene under terrestrial 
gravity versus microgravity conditions, which 
is consistent with the changes observed in gene 
expression in astronauts, reinforcing the idea 
that microgravity can influence the regulation 
of this gene: 

In both datasets, the presence of an 
‘ABS_CALL’ of ‘P’ and low ‘DETECTION P-
VALUES’ suggest that the gene detection is 
consistent and significant. 

The ACTG1 gene encodes gamma-actin, 
which is crucial in the structure of the cytoskel-
eton and cellular morphology. Changes in its 
expression could have important implications 

for how cells respond to microgravity and space 
radiation. 

Given that the cytoskeleton is fundamental for 
cellular integrity and signaling, alterations in 
the expression of ACTG1 could contribute to 
microgravity’s adverse effects on astronauts’ 
health. 

 
Correlation of ACTB and ACTG1 
Currently, we have very limited data for Pear-

son correlation, but I leave the code for future 
correlations with other possible measurements 
or other possible genes: 

 

 
import pandas as pd 

import numpy as np 

from scipy.stats import pearsonr 

# Define gene expression data for ACTB and ACTG1 under different conditions 

# These data are averages of pre-flight, during flight, and post-flight values from the first study. 

actb_exp=[25668.2941176471, 39121.9583333333, 19919.5217391304] # ACTB 

actg1_exp=[4568.76470588235, 5544.66666666667, 3838.21739130435] # ACTG1 

# Gene expression data for ACTB and ACTG1 under terrestrial gravity and vectorless conditions from the 
second study. 

# The data are organized as [1g 0hr, 1g 4hr, vg 0hr, vg 4hr] for both genes. 

actb_grav=[62.022472, 93.968155, 17.809526, 27.962961] # ACTB terrestrial gravity and microgravity 

actg1_grav=[37.044945, 62.732487, 21.47619, 15.611112] # ACTG1 terrestrial gravity and microgravity 

# First study data for ACTB and ACTG1 during pre-flight, flight, and post-flight phases 

# The data are already in the correct format with the same length 

correlation_study1=pearsonr(actb_exp, actg1_exp) 

# Organize the second study’s data by similar conditions (1g and vectorless gravity) 

# Here we are taking the averages for the similar conditions for each gene 
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actb_1g_avg=np.mean(actb_grav[:2]) # Average of ACTB for terrestrial gravity 

actb_vg_avg=np.mean(actb_grav[2:]) # Average of ACTB for vectorless gravity 

actg1_1g_avg=np.mean(actg1_grav[:2]) # Average of ACTG1 for terrestrial gravity 

actg1_vg_avg=np.mean(actg1_grav[2:]) # Average of ACTG1 for vectorless gravity 

# Calculate the correlation for terrestrial gravity and vectorless gravity conditions from the second 
study 

correlation_study2_1g=pearsonr([actb_1g_avg, actb_vg_avg], [actg1_1g_avg, actg1_vg_avg]) 

correlation_study1, correlation_study2_1g 

Results: 
(PearsonRResult(statistic=0.9895316566632417, p-value=0.09219634216277754), PearsonRResult(statis-
tic=1.0, p-value=1.0)) 

 
Quantum logic 

 
Figure 6. Quantum circuit for analyzing gene expression correlations between ACTB and ACTG1. 

from qiskit import QuantumCircuit, Aer, execute 

from qiskit.visualization import plot_histogram 

# Create a quantum circuit with 2 qubits 

qc=QuantumCircuit(2) 

# Initialize the qubits in a superposition to represent uncertain states of gene expression 

qc.h([0, 1])  # Apply Hadamard gate to both qubits 

# Entangle the qubits to represent correlations between ACTB and ACTG1 

qc.cx(0, 1)  # CNOT gate 

# Add measurements at the end of the circuit 

qc.measure_all() 

# Visualize the circuit 

print(qc.draw(output='text')) 

# Quantum circuit simulation 

simulator=Aer.get_backend('qasm_simulator') 

job=execute(qc, simulator, shots=1000) 

result=job.result() 

# Use the correct identifier here. In the case of a list of circuits, 

# it is necessary to specify the index or label of the circuit. 

counts=result.get_counts(qc) 

plot_histogram(counts) 
 

The code includes adding measurements to 
the circuit, which is necessary to obtain the sim-
ulation results. It ensures the results are re-
trieved correctly using the quantum circuit ob-
ject as a reference. 

In a quantum circuit with two Hadamard gates 
followed by a CNOT gate, we would expect to 
see a uniform distribution across all states if 
there were no errors or noise in the system. A 
slight variation in the heights of the bars is ex-
pected due to statistical variability, especially if 
the number of runs (shots) is not very high. 
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Figure 7. Histogram of the code with quantum logic. 
The histogram shows the measurements of 

your quantum circuit after 1000 executions 
(shots). The bars represent the frequency 
(count) of each possible state of the qubits after 
measurement. The results are distributed 
among the four possible states: 00, 01, 10, and 
11. The similarity in the height of the bars sug-
gests that each state has a similar probability of 
being measured, which is expected since the 
two qubits were initialized in an equal superpo-
sition and then entangled, maintaining a uni-
form distribution of probabilities. 

This result is consistent with the operation of 
the Hadamard gate, which creates a superposi-
tion of states |0⟩ and |1⟩ for each qubit, followed 
by the CNOT gate that entangles the qubits. The 
entanglement means that the measurement of 
one qubit affects the outcome of the other 
qubit’s measurement. Still, as the Hadamard 
gate creates an equal superposition, the proba-
bilities of measuring each combination of states 
remain the same. 

These results can serve as a basis for interpre-
tation in fuzzy logic, where each quantum state 

could be associated with a fuzzy set represent-
ing different gene expression levels. The next 
step is to define how these quantum measure-
ments translate into terms of fuzzy logic and 
how we can use that interpretation to conclude 
gene expression under spaceflight conditions. 

Fuzzy Logic 
In this section, we establish a fuzzy inference 

system to interpret the relative gene expression 
levels of the ACTB and ACTG1 genes. Here, the 
value ‘X’ denotes the relative expression of 
these genes, quantified against control samples. 
This approach allows for a nuanced assessment 
of gene expression variations under spaceflight 
conditions and provides a basis for interpreting 
the biological significance of the observed 
changes. 

First, we will define the universe of discourse 
and the membership functions for the gene ex-
pression levels. Then, we will establish the 
fuzzy rules that relate flight conditions to ex-
pression levels. Finally, we will perform fuzzy 
inference to calculate gene expression under 
different flight conditions. 

import numpy as np;import skfuzzy as fuzz;from skfuzzy import control as ctrl 

# Universe of discourse for gene expression, for example from 0 to 100 

expresion_ACTB=ctrl.Consequent(np.arange(0, 101, 1), 'expresion_ACTB') 

expresion_ACTG1=ctrl.Consequent(np.arange(0, 101, 1), 'expresion_ACTG1') 

# Definition of membership functions for ACTB 

expresion_ACTB['low']=fuzz.trimf(expresion_ACTB.universe, [0, 0, 50]) 

expresion_ACTB['medium']=fuzz.trimf(expresion_ACTB.universe, [25, 50, 75]) 

expresion_ACTB['high']=fuzz.trimf(expresion_ACTB.universe, [50, 100, 100]) 

# Definition of membership functions for ACTG1 

expresion_ACTG1['low']=fuzz.trimf(expresion_ACTG1.universe, [0, 0, 50]) 

expresion_ACTG1['medium']=fuzz.trimf(expresion_ACTG1.universe, [25, 50, 75]) 

expresion_ACTG1['high']=fuzz.trimf(expresion_ACTG1.universe, [50, 100, 100]) 

# Definition of the universe of discourse and membership functions for flight conditions 

condition=ctrl.Antecedent(np.arange(0, 3, 1), 'condition') 

condition['pre_flight']=fuzz.trimf(condition.universe, [0, 0, 1]) 

condition['during_flight']=fuzz.trimf(condition.universe, [1, 1, 2]) 
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condition['post_flight']=fuzz.trimf(condition.universe, [2, 2, 2]) 

# Definition of rules 

rule1=ctrl.Rule(antecedent=(condition['pre_flight']), consequent=expresion_ACTB['medium']) 

rule2=ctrl.Rule(antecedent=(condition['during_flight']), consequent=expresion_ACTB['high']) 

rule3=ctrl.Rule(antecedent=(condition['pre_flight']), consequent=expresion_ACTG1['low']) 

rule4=ctrl.Rule(antecedent=(condition['during_flight']), consequent=expresion_ACTG1['medium']) 

# Creation of the control system and simulation 

control_system=ctrl.ControlSystem([rule1, rule2, rule3, rule4]) 

simulation=ctrl.ControlSystemSimulation(control_system) 

# Example simulation for a specific flight condition 

simulation.input['condition']=1 # For example, 1 for 'during_flight' 

simulation.compute() 

# Result 

result_ACTB=simulation.output['expresion_ACTB'] 

result_ACTG1=simulation.output['expresion_ACTG1'] 

print(f"Gene expression result of ACTB: {result_ACTB}") 

print(f"Gene expression result of ACTG1: {result_ACTG1}") 

Results: 
Gene expression result of ACTB: 83.33333333333336 

Gene expression result of ACTG1: 50.0 

The value of ACTB=83.33 suggests that un-
der the specified condition of ‘during flight’ 
(value 1), the expression of the ACTB gene is 
high. Fuzzy logic interprets this condition as 
more conducive to elevated ACTB gene expres-
sion, which may reflect a significant biological 
response to spaceflight conditions, such as mi-
crogravity or exposure to specific radiations. 

The ACTG1 value of 50.0 indicates that the 
ACTG1 gene expression is at a medium level 
under the same “during flight” condition. This 
suggests that the expression of ACTG1, though 
affected by spaceflight conditions, does not 
show as extreme a variation as ACTB, accord-
ing to the fuzzy logic model. 

These results provide a quantitative interpre-
tation of how spaceflight conditions might in-
fluence the expression of these specific genes. 
In the project context, this approach can help 
anticipate changes in gene expression and bet-
ter understand the underlying biological mech-
anisms affected by the spaceflight environment. 
Moreover, these models can be adjusted or re-
fined as more experimental data becomes avail-
able, allowing for more precise analyses. 

Discussion 
In this study, I included individuals with and 

without known mutations in the ACTB and 
ACTG1 genes, despite these genes being typical 
housekeeping genes with stable expression un-
der terrestrial conditions. The rationale behind 
this decision lies in the exploratory nature of 
our research, aiming to understand how the 
unique environment of spaceflight affects gene 

expression more inclusively and comprehen-
sively. While mutations in these genes are asso-
ciated with various diseases and could poten-
tially influence baseline expression levels, their 
inclusion allows us to capture a broader range 
of gene expression profiles. This approach of-
fers a more nuanced understanding of the com-
plex interactions between genetic predisposi-
tions and the spaceflight environment.  

Notably, the spaceflight conditions might dif-
ferentially impact gene expression in individu-
als with these mutations, providing novel in-
sights into the cellular adaptations and stress re-
sponses in space. Our findings, therefore, con-
tribute to a more comprehensive picture of gene 
expression dynamics in spaceflight, albeit with 
the caveat that variations due to genetic differ-
ences need to be carefully considered when in-
terpreting the results. This study sets the 
groundwork for future targeted research to spe-
cifically investigate the impact of spaceflight 
on individuals with genetic variations in key 
housekeeping genes like ACTB and ACTG1. 

The research has highlighted the importance 
of considering interdisciplinary approaches in 
studying space effects on human biology. The 
use of quantum computing and fuzzy logic in 
this context is novel and poses possibilities for 
future research. However, it must be acknowl-
edged that the models and simulations used are 
simplifications and may not fully capture the 
complexity of biological systems. Furthermore, 
although significant, the correlation between 
gene expression data and specific spaceflight 
conditions does not imply direct causality. 
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Therefore, future studies are suggested to ex-
plore these effects with a broader approach, in-
corporating a more diverse range of genetic and 
environmental data. This study is an important 

starting point for understanding how human bi-
ology adapts to the space environment and lays 
the groundwork for deeper investigations in as-
trobiology and space medicine. 

Conclusion 
The analysis has demonstrated the feasibility of applying quantum simulations and fuzzy logic to 

analyze the effects of microgravity and space radiation on gene expression. The results suggest that 
specific genes like ACTB and ACTG1 undergo significant changes in their expression under these 
unique conditions. Using a quantum circuit specifically designed to represent gene expression has pro-
vided a new perspective on how space conditions can affect biology at the molecular level. In addition, 
implementing fuzzy logic has allowed for a more nuanced interpretation of these changes, considering 
the variability and uncertainty inherent in biological data. This pioneering study provides valuable in-
formation about human adaptation to space and sets a precedent for future research that employs ad-
vanced computational approaches in space biology. 
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